3.1743 \(\int \frac{(A+B x) (d+e x)^{5/2}}{a+b x} \, dx\)

Optimal. Leaf size=164 \[ \frac{2 (d+e x)^{5/2} (A b-a B)}{5 b^2}+\frac{2 (d+e x)^{3/2} (A b-a B) (b d-a e)}{3 b^3}+\frac{2 \sqrt{d+e x} (A b-a B) (b d-a e)^2}{b^4}-\frac{2 (A b-a B) (b d-a e)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{b^{9/2}}+\frac{2 B (d+e x)^{7/2}}{7 b e} \]

[Out]

(2*(A*b - a*B)*(b*d - a*e)^2*Sqrt[d + e*x])/b^4 + (2*(A*b - a*B)*(b*d - a*e)*(d + e*x)^(3/2))/(3*b^3) + (2*(A*
b - a*B)*(d + e*x)^(5/2))/(5*b^2) + (2*B*(d + e*x)^(7/2))/(7*b*e) - (2*(A*b - a*B)*(b*d - a*e)^(5/2)*ArcTanh[(
Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/b^(9/2)

________________________________________________________________________________________

Rubi [A]  time = 0.104632, antiderivative size = 164, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 4, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.182, Rules used = {80, 50, 63, 208} \[ \frac{2 (d+e x)^{5/2} (A b-a B)}{5 b^2}+\frac{2 (d+e x)^{3/2} (A b-a B) (b d-a e)}{3 b^3}+\frac{2 \sqrt{d+e x} (A b-a B) (b d-a e)^2}{b^4}-\frac{2 (A b-a B) (b d-a e)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{b^{9/2}}+\frac{2 B (d+e x)^{7/2}}{7 b e} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*(d + e*x)^(5/2))/(a + b*x),x]

[Out]

(2*(A*b - a*B)*(b*d - a*e)^2*Sqrt[d + e*x])/b^4 + (2*(A*b - a*B)*(b*d - a*e)*(d + e*x)^(3/2))/(3*b^3) + (2*(A*
b - a*B)*(d + e*x)^(5/2))/(5*b^2) + (2*B*(d + e*x)^(7/2))/(7*b*e) - (2*(A*b - a*B)*(b*d - a*e)^(5/2)*ArcTanh[(
Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])/b^(9/2)

Rule 80

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(c + d*x)
^(n + 1)*(e + f*x)^(p + 1))/(d*f*(n + p + 2)), x] + Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(
d*f*(n + p + 2)), Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2,
0]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{(A+B x) (d+e x)^{5/2}}{a+b x} \, dx &=\frac{2 B (d+e x)^{7/2}}{7 b e}+\frac{\left (2 \left (\frac{7 A b e}{2}-\frac{7 a B e}{2}\right )\right ) \int \frac{(d+e x)^{5/2}}{a+b x} \, dx}{7 b e}\\ &=\frac{2 (A b-a B) (d+e x)^{5/2}}{5 b^2}+\frac{2 B (d+e x)^{7/2}}{7 b e}+\frac{((A b-a B) (b d-a e)) \int \frac{(d+e x)^{3/2}}{a+b x} \, dx}{b^2}\\ &=\frac{2 (A b-a B) (b d-a e) (d+e x)^{3/2}}{3 b^3}+\frac{2 (A b-a B) (d+e x)^{5/2}}{5 b^2}+\frac{2 B (d+e x)^{7/2}}{7 b e}+\frac{\left ((A b-a B) (b d-a e)^2\right ) \int \frac{\sqrt{d+e x}}{a+b x} \, dx}{b^3}\\ &=\frac{2 (A b-a B) (b d-a e)^2 \sqrt{d+e x}}{b^4}+\frac{2 (A b-a B) (b d-a e) (d+e x)^{3/2}}{3 b^3}+\frac{2 (A b-a B) (d+e x)^{5/2}}{5 b^2}+\frac{2 B (d+e x)^{7/2}}{7 b e}+\frac{\left ((A b-a B) (b d-a e)^3\right ) \int \frac{1}{(a+b x) \sqrt{d+e x}} \, dx}{b^4}\\ &=\frac{2 (A b-a B) (b d-a e)^2 \sqrt{d+e x}}{b^4}+\frac{2 (A b-a B) (b d-a e) (d+e x)^{3/2}}{3 b^3}+\frac{2 (A b-a B) (d+e x)^{5/2}}{5 b^2}+\frac{2 B (d+e x)^{7/2}}{7 b e}+\frac{\left (2 (A b-a B) (b d-a e)^3\right ) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b d}{e}+\frac{b x^2}{e}} \, dx,x,\sqrt{d+e x}\right )}{b^4 e}\\ &=\frac{2 (A b-a B) (b d-a e)^2 \sqrt{d+e x}}{b^4}+\frac{2 (A b-a B) (b d-a e) (d+e x)^{3/2}}{3 b^3}+\frac{2 (A b-a B) (d+e x)^{5/2}}{5 b^2}+\frac{2 B (d+e x)^{7/2}}{7 b e}-\frac{2 (A b-a B) (b d-a e)^{5/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )}{b^{9/2}}\\ \end{align*}

Mathematica [A]  time = 0.202404, size = 136, normalized size = 0.83 \[ \frac{2 (A b-a B) \left (5 (b d-a e) \left (\sqrt{b} \sqrt{d+e x} (-3 a e+4 b d+b e x)-3 (b d-a e)^{3/2} \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{d+e x}}{\sqrt{b d-a e}}\right )\right )+3 b^{5/2} (d+e x)^{5/2}\right )}{15 b^{9/2}}+\frac{2 B (d+e x)^{7/2}}{7 b e} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*(d + e*x)^(5/2))/(a + b*x),x]

[Out]

(2*B*(d + e*x)^(7/2))/(7*b*e) + (2*(A*b - a*B)*(3*b^(5/2)*(d + e*x)^(5/2) + 5*(b*d - a*e)*(Sqrt[b]*Sqrt[d + e*
x]*(4*b*d - 3*a*e + b*e*x) - 3*(b*d - a*e)^(3/2)*ArcTanh[(Sqrt[b]*Sqrt[d + e*x])/Sqrt[b*d - a*e]])))/(15*b^(9/
2))

________________________________________________________________________________________

Maple [B]  time = 0.01, size = 573, normalized size = 3.5 \begin{align*}{\frac{2\,B}{7\,be} \left ( ex+d \right ) ^{{\frac{7}{2}}}}+{\frac{2\,A}{5\,b} \left ( ex+d \right ) ^{{\frac{5}{2}}}}-{\frac{2\,Ba}{5\,{b}^{2}} \left ( ex+d \right ) ^{{\frac{5}{2}}}}-{\frac{2\,Aae}{3\,{b}^{2}} \left ( ex+d \right ) ^{{\frac{3}{2}}}}+{\frac{2\,Ad}{3\,b} \left ( ex+d \right ) ^{{\frac{3}{2}}}}+{\frac{2\,eB{a}^{2}}{3\,{b}^{3}} \left ( ex+d \right ) ^{{\frac{3}{2}}}}-{\frac{2\,Bad}{3\,{b}^{2}} \left ( ex+d \right ) ^{{\frac{3}{2}}}}+2\,{\frac{{e}^{2}A{a}^{2}\sqrt{ex+d}}{{b}^{3}}}-4\,{\frac{aAde\sqrt{ex+d}}{{b}^{2}}}+2\,{\frac{A{d}^{2}\sqrt{ex+d}}{b}}-2\,{\frac{{a}^{3}{e}^{2}B\sqrt{ex+d}}{{b}^{4}}}+4\,{\frac{eB{a}^{2}d\sqrt{ex+d}}{{b}^{3}}}-2\,{\frac{Ba{d}^{2}\sqrt{ex+d}}{{b}^{2}}}-2\,{\frac{{e}^{3}A{a}^{3}}{{b}^{3}\sqrt{ \left ( ae-bd \right ) b}}\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) }+6\,{\frac{{e}^{2}A{a}^{2}d}{{b}^{2}\sqrt{ \left ( ae-bd \right ) b}}\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) }-6\,{\frac{Aae{d}^{2}}{b\sqrt{ \left ( ae-bd \right ) b}}\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) }+2\,{\frac{A{d}^{3}}{\sqrt{ \left ( ae-bd \right ) b}}\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) }+2\,{\frac{B{a}^{4}{e}^{3}}{{b}^{4}\sqrt{ \left ( ae-bd \right ) b}}\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) }-6\,{\frac{{a}^{3}{e}^{2}Bd}{{b}^{3}\sqrt{ \left ( ae-bd \right ) b}}\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) }+6\,{\frac{eB{a}^{2}{d}^{2}}{{b}^{2}\sqrt{ \left ( ae-bd \right ) b}}\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) }-2\,{\frac{Ba{d}^{3}}{b\sqrt{ \left ( ae-bd \right ) b}}\arctan \left ({\frac{b\sqrt{ex+d}}{\sqrt{ \left ( ae-bd \right ) b}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(e*x+d)^(5/2)/(b*x+a),x)

[Out]

2/7*B*(e*x+d)^(7/2)/b/e+2/5/b*A*(e*x+d)^(5/2)-2/5/b^2*B*(e*x+d)^(5/2)*a-2/3*e/b^2*A*(e*x+d)^(3/2)*a+2/3/b*A*(e
*x+d)^(3/2)*d+2/3*e/b^3*B*(e*x+d)^(3/2)*a^2-2/3/b^2*B*(e*x+d)^(3/2)*a*d+2*e^2/b^3*A*a^2*(e*x+d)^(1/2)-4*e/b^2*
A*a*d*(e*x+d)^(1/2)+2/b*A*d^2*(e*x+d)^(1/2)-2*e^2/b^4*a^3*B*(e*x+d)^(1/2)+4*e/b^3*B*a^2*d*(e*x+d)^(1/2)-2/b^2*
B*a*d^2*(e*x+d)^(1/2)-2*e^3/b^3/((a*e-b*d)*b)^(1/2)*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*A*a^3+6*e^2/b^
2/((a*e-b*d)*b)^(1/2)*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*A*a^2*d-6*e/b/((a*e-b*d)*b)^(1/2)*arctan(b*(
e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*A*a*d^2+2/((a*e-b*d)*b)^(1/2)*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*A*
d^3+2*e^3/b^4/((a*e-b*d)*b)^(1/2)*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*B*a^4-6*e^2/b^3/((a*e-b*d)*b)^(1
/2)*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*B*a^3*d+6*e/b^2/((a*e-b*d)*b)^(1/2)*arctan(b*(e*x+d)^(1/2)/((a
*e-b*d)*b)^(1/2))*B*a^2*d^2-2/b/((a*e-b*d)*b)^(1/2)*arctan(b*(e*x+d)^(1/2)/((a*e-b*d)*b)^(1/2))*B*a*d^3

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^(5/2)/(b*x+a),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.45264, size = 1247, normalized size = 7.6 \begin{align*} \left [\frac{105 \,{\left ({\left (B a b^{2} - A b^{3}\right )} d^{2} e - 2 \,{\left (B a^{2} b - A a b^{2}\right )} d e^{2} +{\left (B a^{3} - A a^{2} b\right )} e^{3}\right )} \sqrt{\frac{b d - a e}{b}} \log \left (\frac{b e x + 2 \, b d - a e + 2 \, \sqrt{e x + d} b \sqrt{\frac{b d - a e}{b}}}{b x + a}\right ) + 2 \,{\left (15 \, B b^{3} e^{3} x^{3} + 15 \, B b^{3} d^{3} - 161 \,{\left (B a b^{2} - A b^{3}\right )} d^{2} e + 245 \,{\left (B a^{2} b - A a b^{2}\right )} d e^{2} - 105 \,{\left (B a^{3} - A a^{2} b\right )} e^{3} + 3 \,{\left (15 \, B b^{3} d e^{2} - 7 \,{\left (B a b^{2} - A b^{3}\right )} e^{3}\right )} x^{2} +{\left (45 \, B b^{3} d^{2} e - 77 \,{\left (B a b^{2} - A b^{3}\right )} d e^{2} + 35 \,{\left (B a^{2} b - A a b^{2}\right )} e^{3}\right )} x\right )} \sqrt{e x + d}}{105 \, b^{4} e}, \frac{2 \,{\left (105 \,{\left ({\left (B a b^{2} - A b^{3}\right )} d^{2} e - 2 \,{\left (B a^{2} b - A a b^{2}\right )} d e^{2} +{\left (B a^{3} - A a^{2} b\right )} e^{3}\right )} \sqrt{-\frac{b d - a e}{b}} \arctan \left (-\frac{\sqrt{e x + d} b \sqrt{-\frac{b d - a e}{b}}}{b d - a e}\right ) +{\left (15 \, B b^{3} e^{3} x^{3} + 15 \, B b^{3} d^{3} - 161 \,{\left (B a b^{2} - A b^{3}\right )} d^{2} e + 245 \,{\left (B a^{2} b - A a b^{2}\right )} d e^{2} - 105 \,{\left (B a^{3} - A a^{2} b\right )} e^{3} + 3 \,{\left (15 \, B b^{3} d e^{2} - 7 \,{\left (B a b^{2} - A b^{3}\right )} e^{3}\right )} x^{2} +{\left (45 \, B b^{3} d^{2} e - 77 \,{\left (B a b^{2} - A b^{3}\right )} d e^{2} + 35 \,{\left (B a^{2} b - A a b^{2}\right )} e^{3}\right )} x\right )} \sqrt{e x + d}\right )}}{105 \, b^{4} e}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^(5/2)/(b*x+a),x, algorithm="fricas")

[Out]

[1/105*(105*((B*a*b^2 - A*b^3)*d^2*e - 2*(B*a^2*b - A*a*b^2)*d*e^2 + (B*a^3 - A*a^2*b)*e^3)*sqrt((b*d - a*e)/b
)*log((b*e*x + 2*b*d - a*e + 2*sqrt(e*x + d)*b*sqrt((b*d - a*e)/b))/(b*x + a)) + 2*(15*B*b^3*e^3*x^3 + 15*B*b^
3*d^3 - 161*(B*a*b^2 - A*b^3)*d^2*e + 245*(B*a^2*b - A*a*b^2)*d*e^2 - 105*(B*a^3 - A*a^2*b)*e^3 + 3*(15*B*b^3*
d*e^2 - 7*(B*a*b^2 - A*b^3)*e^3)*x^2 + (45*B*b^3*d^2*e - 77*(B*a*b^2 - A*b^3)*d*e^2 + 35*(B*a^2*b - A*a*b^2)*e
^3)*x)*sqrt(e*x + d))/(b^4*e), 2/105*(105*((B*a*b^2 - A*b^3)*d^2*e - 2*(B*a^2*b - A*a*b^2)*d*e^2 + (B*a^3 - A*
a^2*b)*e^3)*sqrt(-(b*d - a*e)/b)*arctan(-sqrt(e*x + d)*b*sqrt(-(b*d - a*e)/b)/(b*d - a*e)) + (15*B*b^3*e^3*x^3
 + 15*B*b^3*d^3 - 161*(B*a*b^2 - A*b^3)*d^2*e + 245*(B*a^2*b - A*a*b^2)*d*e^2 - 105*(B*a^3 - A*a^2*b)*e^3 + 3*
(15*B*b^3*d*e^2 - 7*(B*a*b^2 - A*b^3)*e^3)*x^2 + (45*B*b^3*d^2*e - 77*(B*a*b^2 - A*b^3)*d*e^2 + 35*(B*a^2*b -
A*a*b^2)*e^3)*x)*sqrt(e*x + d))/(b^4*e)]

________________________________________________________________________________________

Sympy [A]  time = 54.0442, size = 221, normalized size = 1.35 \begin{align*} \frac{2 B \left (d + e x\right )^{\frac{7}{2}}}{7 b e} + \frac{\left (d + e x\right )^{\frac{5}{2}} \left (2 A b - 2 B a\right )}{5 b^{2}} + \frac{\left (d + e x\right )^{\frac{3}{2}} \left (- 2 A a b e + 2 A b^{2} d + 2 B a^{2} e - 2 B a b d\right )}{3 b^{3}} + \frac{\sqrt{d + e x} \left (2 A a^{2} b e^{2} - 4 A a b^{2} d e + 2 A b^{3} d^{2} - 2 B a^{3} e^{2} + 4 B a^{2} b d e - 2 B a b^{2} d^{2}\right )}{b^{4}} + \frac{2 \left (- A b + B a\right ) \left (a e - b d\right )^{3} \operatorname{atan}{\left (\frac{\sqrt{d + e x}}{\sqrt{\frac{a e - b d}{b}}} \right )}}{b^{5} \sqrt{\frac{a e - b d}{b}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)**(5/2)/(b*x+a),x)

[Out]

2*B*(d + e*x)**(7/2)/(7*b*e) + (d + e*x)**(5/2)*(2*A*b - 2*B*a)/(5*b**2) + (d + e*x)**(3/2)*(-2*A*a*b*e + 2*A*
b**2*d + 2*B*a**2*e - 2*B*a*b*d)/(3*b**3) + sqrt(d + e*x)*(2*A*a**2*b*e**2 - 4*A*a*b**2*d*e + 2*A*b**3*d**2 -
2*B*a**3*e**2 + 4*B*a**2*b*d*e - 2*B*a*b**2*d**2)/b**4 + 2*(-A*b + B*a)*(a*e - b*d)**3*atan(sqrt(d + e*x)/sqrt
((a*e - b*d)/b))/(b**5*sqrt((a*e - b*d)/b))

________________________________________________________________________________________

Giac [B]  time = 1.5221, size = 501, normalized size = 3.05 \begin{align*} -\frac{2 \,{\left (B a b^{3} d^{3} - A b^{4} d^{3} - 3 \, B a^{2} b^{2} d^{2} e + 3 \, A a b^{3} d^{2} e + 3 \, B a^{3} b d e^{2} - 3 \, A a^{2} b^{2} d e^{2} - B a^{4} e^{3} + A a^{3} b e^{3}\right )} \arctan \left (\frac{\sqrt{x e + d} b}{\sqrt{-b^{2} d + a b e}}\right )}{\sqrt{-b^{2} d + a b e} b^{4}} + \frac{2 \,{\left (15 \,{\left (x e + d\right )}^{\frac{7}{2}} B b^{6} e^{6} - 21 \,{\left (x e + d\right )}^{\frac{5}{2}} B a b^{5} e^{7} + 21 \,{\left (x e + d\right )}^{\frac{5}{2}} A b^{6} e^{7} - 35 \,{\left (x e + d\right )}^{\frac{3}{2}} B a b^{5} d e^{7} + 35 \,{\left (x e + d\right )}^{\frac{3}{2}} A b^{6} d e^{7} - 105 \, \sqrt{x e + d} B a b^{5} d^{2} e^{7} + 105 \, \sqrt{x e + d} A b^{6} d^{2} e^{7} + 35 \,{\left (x e + d\right )}^{\frac{3}{2}} B a^{2} b^{4} e^{8} - 35 \,{\left (x e + d\right )}^{\frac{3}{2}} A a b^{5} e^{8} + 210 \, \sqrt{x e + d} B a^{2} b^{4} d e^{8} - 210 \, \sqrt{x e + d} A a b^{5} d e^{8} - 105 \, \sqrt{x e + d} B a^{3} b^{3} e^{9} + 105 \, \sqrt{x e + d} A a^{2} b^{4} e^{9}\right )} e^{\left (-7\right )}}{105 \, b^{7}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(e*x+d)^(5/2)/(b*x+a),x, algorithm="giac")

[Out]

-2*(B*a*b^3*d^3 - A*b^4*d^3 - 3*B*a^2*b^2*d^2*e + 3*A*a*b^3*d^2*e + 3*B*a^3*b*d*e^2 - 3*A*a^2*b^2*d*e^2 - B*a^
4*e^3 + A*a^3*b*e^3)*arctan(sqrt(x*e + d)*b/sqrt(-b^2*d + a*b*e))/(sqrt(-b^2*d + a*b*e)*b^4) + 2/105*(15*(x*e
+ d)^(7/2)*B*b^6*e^6 - 21*(x*e + d)^(5/2)*B*a*b^5*e^7 + 21*(x*e + d)^(5/2)*A*b^6*e^7 - 35*(x*e + d)^(3/2)*B*a*
b^5*d*e^7 + 35*(x*e + d)^(3/2)*A*b^6*d*e^7 - 105*sqrt(x*e + d)*B*a*b^5*d^2*e^7 + 105*sqrt(x*e + d)*A*b^6*d^2*e
^7 + 35*(x*e + d)^(3/2)*B*a^2*b^4*e^8 - 35*(x*e + d)^(3/2)*A*a*b^5*e^8 + 210*sqrt(x*e + d)*B*a^2*b^4*d*e^8 - 2
10*sqrt(x*e + d)*A*a*b^5*d*e^8 - 105*sqrt(x*e + d)*B*a^3*b^3*e^9 + 105*sqrt(x*e + d)*A*a^2*b^4*e^9)*e^(-7)/b^7